THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

232/1

PHYSICS (Theory)

Nov. 2023 - 2 hours

Paper 1

_		
S	arial	No

26301821

Name:	Index Number:
Candidate's signature:	Date:

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two sections; A and B.
- (d) Answer all the questions in sections A and B in the spaces provided.
- (e) All working must be clearly shown in the spaces provided in this booklet.
- (f) Non-programmable silent electronic calculators may be used.
- (g) This paper consists of 12 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Section	Questions	Maximum Score	Candidate's Score
A	1 - 13	25	3 4 5 5
	14	relially	7000
	15	HI 111	
В	16	TI KEN	
	17	TANITAN	
	18_	11	
Tota	I Score	80	

© 2023 The Kenya National Examinations Council

Turn over

2 SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.

State one way in which Physics contributes to the study of History.	(1 mark)
It is observed that diffusion is faster in gases than in liquids. State the reason for this observation.	(1 mark)
A boarding school has two identical tanks A and B filled with water. All the surfaces of are painted silvery shiny while the surfaces of tank B are painted black. It is observed to bathing in the morning, most of the students prefer fetching water from one particular to	nat, ioi
(a) Identify the tank preferred by the students in the morning.	(1 mark
(b) Explain why students prefer to use water in the tank identified in 3(a).	(2 marks
Figure 1 shows a uniform metre rule of negligible weight pivoted at the 40 cm mark. I kept at equilibrium by a spring balance attached at the 100 cm mark and force F at the	t is 60 cm mark
40 cm 60 cm 100 cm	*
Figure 1 The reading on the spring balance is 1 N. Determine the value of F.	(3 mark
n Type-18 Junior	
Vorma Cartificate of Secondary Education, 2023	

5	A mass of 40 g is suspended from a spring ca			s added to
	it, the spring stretches further by 1.6 cm. Dete (gravitational field strength $g=10 \text{ Nkg}^{-1}$)	ermine the spring co	onstant.	(2 marks)
部間				
		i î		
6	Figure 2 shows a test tube containing air and horizontally by a thread.	fitted with a sliding	g cork. The tube is	suspended
	11/1/	111		
)				
	Cork	Air	Test tube	
		gure 2	1 494 1	
	When the test tube was heated slightly, the co		ube tilted.	(1 1)
	(a) State the direction in which the tube t	tilted.		(1 mark)
				•••••
□ ••	(b) Explain why the tube tilted as in 6(a).	1		(2 marks)

<u>}</u>	- Francis	ang di Sang		#11
- Nu		The market of the		
7	Figure 3 shows two identical tennis balls K a			
	ball L does not.	ind 2 moving in uni	Bull It spills us iv	
	Spin	10 - 12 - 12		* 8
		1	les	
	*()	> Motion		
	L()	→ Motion		
	Tri.	2		
	Kenya Certificate of Se	gure 3 econdary Education, 2	023	

Figure 4 shows a velocity - time graph of a certain object.	
V (ms ⁻¹)	
	¥
t(s)	
Figure 4	/2
Describe the motion of the object.	(2
Describe and an analysis of the second secon	

	1 - l - l of
Comment on a curved trict	ionless bowl of
Figure 5 shows a toy car of mass 250 g moving from rest on a curved free	
Figure 5 shows a toy car of mass 250 g moving from rest on a curved frict height 0.2 m.	
Figure 5 shows a toy car of mass 250 g moving from rest on a curved free height 0.2 m.	
height 0.2 m.	
height 0.2 m.	
height 0.2 m.	
height 0.2 m.	ele
height 0.2 m. O.2m Figure 5	ele
height 0.2 m. Determine the maximum kinetic energy that the toy attains.	
height 0.2 m. O.2m Figure 5	ele (3 ma
height 0.2 m. Determine the maximum kinetic energy that the toy attains.	

	one factor that determines the speed at which a car negotiates a level circular path.	(1 m
	dent observed that a burn by steam from boiling water was more severe than a burn ng water. State the reason for this observation.	by the (1 m
********	i	
17,17,21,17,17,17	one advantage of a force pump over a lift pump.	(1 m

	one possible source of error that may occur when carrying out an experiment to ver les' Law.	100
		100
		100
	les' Law.	2.75
		2.75
	les' Law.	100
	SECTION B (55 marks)	(1 m
Char	SECTION B (55 marks) Answer all the questions in this section in the spaces provided. State two properties of alcohol that make an alcohol thermometer more suitable t	(1 m
Char	SECTION B (55 marks) Answer all the questions in this section in the spaces provided. State two properties of alcohol that make an alcohol thermometer more suitable t	(1 m

Kenya Certificate of Secondary Education, 2023 232/1

317147

Turn over

Figure 6

(i)	State the purpose of the:	
	I. part labelled X;	(1 mark)
	II. mercury.	(1 mark)
(ii)	State the reason why indices A and B are made of steel.	(1 mark)
		·····
(iii)	Explain how the maximum temperature for a given day is determined using thermometer.	this type of (3 marks)

	(iv)	State the reason for the shape of the meniscus of mercury in Figure 6.	(1 mark)
	(c)	Figure 7 show a cork stuck in the neck of glass bottle. Cork Bottle	
		Figure 7	
		Figure 7	
		Explain how the cork can be removed from the bottle without breaking the bottle cork.	or the (2 marks)
		min Shelit Flesherma	
15			
15	(a)	Explain the following observations:	
		(i) A trolley moving on a bench in a straight line eventually comes to rest;	(2 marks)
E A C			1011101110
	*********	· ·	
		(ii) A passenger is jerked forward when a vehicle is suddenly stopped.	(2 marks)
			(2 marks)

(b) Figure 8 shows a graph of velocity against time for two identical ball bearing into water and glycerine.	ngs dropped
Velocity (ms ⁻¹) x))
time (s)	
Figure 8	
State with a reason which of the two curves x or y shows the velocity of the ball be falling through water.	aring (3 marks)
(c) Figure 9 shows a student of mass 60 kg standing on a weighing balance cal newtons in a lift. The lift is accelerating upwards at 0.25 ms ⁻² .	ibrated in
Student weighing balance Figure 9	
Determine the reading on the weighing balance.	(3 marks)

(d)	State	one way of reducing frictional force experienced by an object sliding on a flat surface. (1 mark

16	(a)	Figure 10 (a) shows two similar bottles P and Q of the same weight while Figure 10 (b) shows bottle P kept affoat in water using an inflated balloon.
9		P Q
		(a) Figure 10
		Bottle P in Figure 10 (b) is then replaced with bottle Q in Figure 10 (a).
		(i) State what is observed on bottle Q. (1 mark)
		(1 mark)
₽		(ii) Explain the observation in part (i). (2 marks)
	(b)	A piece of metal weighs 0.6 N in air and 0.5 N when fully submerged in water. When the metal is fully submerged in liquid L, it weighs 0.54 N. Determine the:
		(i) relative density of the metal. (3 marks)
		······································

	(ii) relative density of liquid L.	(3 marks)
		45
	(iii) density of liquid L.	(2 marks)
	In an experiment to estimate the diameter of an experiment to estimate the experiment to experiment to estimate the experiment to experiment to experiment the experiment to experiment to experiment the experiment to experiment the experiment to experiment the experiment to experiment the experiment to experimen	(2 marks)
	II. diameter of the oil molecule.	(3 marks)
	, programme value	6 H Le
	(ii) State two assumptions made in such an experiment.	(2 marks)
		······

	(iii) State any two possible sources of error in the experiment.	(2 marks)
(b)	Describe how the experiment in 17(a) could be used to determine the extent of accidental oil spillage in the sea.	(2 marks)
18 (a)		
18 (a)	Figure 11 shows two liquids L and M each of mass 1 kg in identical containers. Li L has higher heat capacity than liquid M. Thermometer Heat Figure 11	quid
	The liquids are heated with the same amount of heat for the same length of time.	
	(i) State the charged in male it is at	

	Explain the observation in part (i). (2 mar	

(iii)	State two ways in which heat losses in the two calorimeters can be minimized.	
	(2 mar	rks)
		.15
A blo	ock of ice at 0 °C and of mass 5 g is placed into a calorimeter containing 50 g of	
wate (Assi	er at 25 °C. If all the ice melted, determine the final temperature of the mixture.	
(Assi	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as 4200Jkg ⁻¹ k ⁻¹ and the specific latent heat of fusion of ice	121 32
(Assi capa	ume that negligible heat is absorbed by the calorimeter). Take the specific heat	rks)
(Assi capa	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as $4200 \mathrm{Jkg^{-1} k^{-1}}$ and the specific latent heat of fusion of ice $.5 \times 10^5 \mathrm{Jkg^{-1}}$ (4 mas	rks)
(Assi capa	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as 4200Jkg ⁻¹ k ⁻¹ and the specific latent heat of fusion of ice	rks)
(Assi capa	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as $4200 \mathrm{Jkg^{-1} k^{-1}}$ and the specific latent heat of fusion of ice $.5 \times 10^5 \mathrm{Jkg^{-1}}$ (4 mas	rks)
(Assi capa	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as $4200 \mathrm{Jkg^{-1} k^{-1}}$ and the specific latent heat of fusion of ice $.5 \times 10^5 \mathrm{Jkg^{-1}}$ (4 mas	rks)
(Assi capa	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as $4200 \mathrm{Jkg^{-1} k^{-1}}$ and the specific latent heat of fusion of ice $.5 \times 10^5 \mathrm{Jkg^{-1}}$ (4 mas	rks)
(Assi capa	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as $4200 \mathrm{Jkg^{-1} k^{-1}}$ and the specific latent heat of fusion of ice $.5 \times 10^5 \mathrm{Jkg^{-1}}$ (4 mas	rks)
(Assacapa as 3.	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as 4200Jkg ⁻¹ k ⁻¹ and the specific latent heat of fusion of ice .5 × 10 ⁵ Jkg ⁻¹ (4 ma	rks)
(Assacapa as 3.	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as 4200Jkg ⁻¹ k ⁻¹ and the specific latent heat of fusion of ice (4 may be observed that food cooks faster in a covered container than in an open container.	rks)
(Assacapa as 3.	ume that negligible heat is absorbed by the calorimeter). Take the specific heat acity of water as 4200Jkg ⁻¹ k ⁻¹ and the specific latent heat of fusion of ice .5 × 10 ⁵ Jkg ⁻¹ (4 ma	
(Assacapa as 3.	observed that food cooks faster in a covered container than in an open container.	
(Assacapa as 3.	observed that food cooks faster in a covered container than in an open container.	
(Assacapa as 3.	observed that food cooks faster in a covered container than in an open container.	
(Assacapa as 3.	observed that food cooks faster in a covered container than in an open container.	
(Assacapa as 3.	observed that food cooks faster in a covered container than in an open container.	
(Assacapa as 3.	observed that food cooks faster in a covered container than in an open container.	

THIS IS THE LAST PRINTED PAGE.